Heat-Enhanced Catalyzed Reductive Bioremediation

Wed., November 15, 2023 tersusenv.com • surbec.com

Agenda

Overview **Optimal Dechlorination Conditions** & Average Groundwater Temperatures

Heat Catalyzed Enhanced **Reductive Bioremediation**

02

Catalyzed Enhanced Reductive Bioremediation

Heating Options Benefits of this approach

What is needed for enhanced reductive dechlorination?

Optimal Dechlorination Conditions

• Temperature 15–35 °C, with an optimum growth temperature between 25 and 30 °C

• pH 6.5 and 8.0

Products & Services for *In Situ* Remediation • tersusenv.con © 2023 Tersus Environmental, LLC. All Rights Reserved

Groundwater Temperatures (°C)

Average shallow groundwater temperatures in the contiguous US

Ref: https://www.researchgate.net/publication/270565164, Derived from Collins [1925], Collins, W. D., 1925. Temperature of water available for industrial use in the United States: U. S. Geol. Survey Water-Supply Paper 520-F, p. 97-104.

Average shallow groundwater temperatures in Canada

Ref: Rinnai America Corporation, North America Ground Water Temperature Map

2)	Unite Birk et :	d Sta al.	tes Patent	(10) Patent No.: U (45) Date of Patent:	JS 11,577,231 B2 Feb. 14, 2023
4)	ENHANCED REDUCTION BIOREMEDIATION METHOD USING IN-SITU ALCOHOLYSIS		CTION	FOREIGN PATENT DOCUMENTS	
			V METHOD USING LYSIS	CN 1071449 * 4/1993 WO 2011078949 * 6/2011	
1)	Applicant:	Tersus Er Forest, No	vironmental LLC, Wake	OTHER PUBL	ICATIONS
2)	Inventors:	Gary M. David F.	Birk. Wake Forest, NC (US); Alden, Scranton, PA (US)	Office of Science. "DOE Explains 2022)." Sawyer et al., Chemistry for Environ	Catalysts". 2022 (Year unental Engineering. McGraw
3)	Assignee:	Assignee: Tersus Environmental LLC		Hill Inc; 1994, Chapter 4: pp. 114-211, Chapter 5: pp. 212-313, and Chapter 6: pp. 315-359. Maxmo-Gatell et al.: Lolation of a Bacterium That Reductively.	
9	Notice:	Subject to patent is	any disclaimer, the term of this extended or adjusted under 35 4(b) by 30// days	Dechlorinates Tetrachloroethene to Et 1571. Ma et al; Biodiesel Production: A R (1992) pp. 1-15.	thene, Science (1997) 276-1568 eview: Bioresour. Technol., 70
1)	Appl. No.:	16/797,61	7	Wei et al, Electron Acceptor Intera Respiring Bacteria: Cross-Feeding,	ctions Between Organohalide Competition, and Inhibition
2)	Filed:	Feb. 21, 2	2020	 Department of Chemical Engineerin versity of Toronto, Toronto, ON, Ca Yusuf et al., Overview on the Curre 	g and Applied Chemistry, Uni anada, 2016. nt Trends in Biodiesel Produc
5)	Prior Publication Data		ublication Data	tion; Energy Convers. Manage., 52 (2011), pp. 2741-2751. BSTCP Technical Report: White Paper, A Review of Biofouling Control for Information of USE Historyacticition of Constructions (Ed.).	
	US 2021/0	260566 A1	Aug. 26, 2021	2005, pp. 1-55. Chawla et al; Effect of Alcohol Co:	solvents on the Aqueous Solu-
a) –	Int. CL B09C 1/08	2	(2006.01)	 bility of Trichloroethylene, Proceedi Environmental Research, pp. 52-66. 	ngs of the 2001 Conference on
	B01J 31/0	0	(2006.01)	Abbah et al; American Journal of En	ergy Science (AJER). 3 (2016).
	R01J 23/0	4	(2006.01)	pp. 16-20.	
	B01J 35/0	0	(2006.01)	(2017) https://doi.org/10.1063/1.50	16024 pp 1-6
	B01J 3//0 P00C 1/0	4	(2006.01)	Environmental Security Technology	Certification Program, Proto-
	C02E 1/72	,	(2023.01)	col for Enhanced In Situ Bioremedi	iation Using Emulaified Edible
	C02F 3/28	1	(2023.01)	Oil: Arlington, VA, May 2006, pp.	1-99.
	C02F 3/3-		(2023.01)	European search Report EP 211555	49 daleu Jul. 13, 2021.
	C02F 103	06	(2006.01)	* cited by examiner	
2)	U.S. Cl.				
<i>.</i>	CPC	B01J	31/003 (2013.01); B01J 23/04	Primary Examiner - Sheng II	Davis
	(2013.01); .	801J 35/0013 (2013.01); 801J	(74) Attorney, Agent, or Firm-	– Belles Katz LLC
	37/04	(2013.01)	B09C 1/002 (2013.01); B09C	(27)	
	1/08	(2013.01)	C021 1/725 (2013.01); C02F	(57) ABSTR/	NC I
	3/2	8 (2013.01) 205 (2012)	co2r 3/342 (2013.01); B01J 01); D011 252 (2002 (2012.01);	The present subject matter rel	ates to a composition for
	2251/005 (2015:01); 8015 2557/002 (2015:01); 800C 2101/00 (2012:01); C02E 2102/06		01); 8013 25314002 (2013.01); 12/00 (2012.01): C02E 2102/06	in-situ remediation of soil and ac	uiler comprising of a water
	(2013.01), C027 2103.00		(2013.01), C021 210.00	form a solution), and a satabut (salasted form	
8)	Field of Classification Search		n Search	hioratelyste particularly linear	st (selected from enzymes
.,	None Sea amplication file for complete courts history		a complete courds history	or combinations thereof). The	present subject matter pro-
6)	soc applie	Referen	nces Cited	application of the same for surfa	ton of the composition and ce remediation. Further, the
.,	0.	S. PATENI	DOCUMENTS	diation method to reduce com aquifar and soil by apphing the	an in-still accholysis reme- taminant concentrations in concentration of both soluble
3	3,655,569 A * 4/1972 Hellster C11D.3/39		Helfster C11D 3/39	and slowly fermenting electron donors required for the	
2009.	209/0023820 A1* 1/2009 Dailey		Dailey D06M 13/17 516/204	nating soils and groundwater. The method of remediation includes mixing an engineered water-soluble oil or water	
2014	0121137 A	1* 5/2014	Andrecola	miscible oil with a solvent and a water to promote the formation	adding a catalyst to ground- of fatty acid alkyl esters
.015	0068755 A.	1 12/2015	166/305.1 Archibald	carboxylic acid salts and glycer	vl.
015					

Page 1 of 18

Catalyzed Enhanced Reductive Bioremediation

Definitions

 Alcoholysis: A reaction in which an alcohol is a reactant and becomes part of the reaction product.

• Transesterification: The chemical conversion process of triglycerides with alcohol into fatty acid esters with the help of a catalyst.

In Situ Transesterification of Vegetable Oils

Activator Options

Hydroxide base-catalyzed transesterification of triglycerides

Lipase-catalyzed hydrolysis of triglyceride

- Homogeneous Alkaline Catalyst • Alkyl oxides (RO–)
- Biocatalyst

 Enzyme (triglyceride lipases)

Temperature Effect on Yield

Homogeneous Alkaline Catalyst

• 1 wt.% Catalyst

Modified from Kasirajan, Ramachandran. (2021). Biodiesel Production by two step process from an Energy Source of Chrysophyllum albidum Oil using Homogeneous Catalyst. South African Journal of Chemical Engineering. <u>https://doi.org/10.1016/j.sajce.2021.05.011</u>.

Effect of Reaction Time on Yield

Homogeneous Alkaline Catalyst

- 65°C of reaction temperature
- 1 wt.% Catalyst

Modified from Kasirajan, Ramachandran. (2021). Biodiesel Production by two step process from an Energy Source of Chrysophyllum albidum Oil using Homogeneous Catalyst. South African Journal of Chemical Engineering. https://doi.org/10.1016/j.sajce.2021.05.011.

Temperature Effect on Yield

Enzyme (Lipase as Biocatalyst)

- Optimum at 55°C with the fatty acid yield of 81%
- Above 60°C , enzyme undergoes denaturation (loses structure)

Modified from Istiningrum et al. 2017, AIP Conference Proceedings 1911, 020031 (2017); https://doi.org/10.1063/1.5016024

Example Projects

TCE Site

Photos curtesy of Justin Kerr, Kerr Environmental, Greater Adelaide Area, SA, AUSTRALIA

- 2,830 µg/L TCE (highest conc.)
- Primawave[®] Pressure Pulse
- Injected 75,000L of EDS-Advanced[™] into the source zone over two weeks

Injection Setup

Four injection lines with individual flow and pressure control and monitoring

Primawave[®] Pressure Pulse for injection into clays

Photos and video curtesy of Justin Kerr, Kerr Environmental, Greater Adelaide Area, SA, AUSTRALIA

TCE Results (Approximately 95% mass reduction)

Data curtesy of Justin Kerr, Kerr Environmental, Greater Adelaide Area, SA, AUSTRALIA

TCE Site

Reference: Remediation Seminars Webinar, How to Integrate Bench Scale Tests, Molecular Diagnostic Tools (MDT), and Compound-Specific Isotope Analysis (CSIA) to you Field Pilot Test, Dec. 7, 2022

Injection Results

Reference: Remediation Seminars Webinar, How to Integrate Bench Scale Tests, Molecular Diagnostic Tools (MDT), and Compound-Specific Isotope Analysis (CSIA) to you Field Pilot Test, Dec. 7, 2022

Heat-Enhanced Catalyzed Reductive Bioremediation

Products & Services for *In Situ* Remediation • tersusenv.com © 2023 Tersus Environmental, LLC. All Rights Reserved.

Thermal Enhancement Options

Apply Heat

- Enhances transesterification reaction
- Reduces time from days to months to minutes to hours

Optimum Growth Temperature

- 25-30°C hydrogenotrophic Dhc strains (Löffler et al., 2013)
- <40–45°C biotic or abiotic destruction
- > 50°C very little biotic or abiotic destruction (Stroo et al., 2013; Costanza et al., 2009)

Hot Water vs Cold Water

• Hot water dissolves fewer gases (e.g., oxygen or carbon dioxide)

• Hot water dissolves more solids (e.g., sugars)

Heating Options

Conventional

- Residual heat from an *in situ* thermal remediation project
- Electrical resistance heating
- Thermal conduction heating

Heat amendments / water and inject

- Hot water boiler
- Shell and tube heating tank or a batch heating tank with coils
- Solar collector, thermal storage tank with a submerged heat exchanger and an auxiliary heat exchanger

Hot Fluid Injection

Hydrogeological parameters

- Site lithology: sand
- Porosity: 0.33
- Aquifer hydraulic conductivity K of 1x10⁻² cm/s
- Hydraulic gradient: 0.002 feet/feet

Injection

- 12-hour injection event
- 75 m³ (19,813 gallons) of heated fluid to 90°C
- 150 m³/d (27.5 gpm) flow rate

Model Results

Model Results (continued)

Model Results (continued)

Time = 10 days H-2 4 30.0

Model Results (continued)

Time = 60 days

Products & Services for *In Situ* Remediation • tersusenv.com © 2023 Tersus Environmental, LLC. All Rights Reserved.

Hot Water Injections

- Insulated Semi Tank Trailer to haul 180-degree water
 - Delivery \$7,900 / 6,000-gallon load
 - Demurrage \$1,200/ 6,000 gallons

Mobile Boilers

 Fire Tabe Bolier

 Browner Frei Steppt and

 Browner Frei Steppt and

 Browner Grauer

 Browner

 Browner
 </tr

Reference: Wilkinson Mobile Boilers, Inc.

tersus environmental

Budgetary Cost Range

Rental

- Domestic/Heating Hot Water Mobile Boiler
 - Monthly Rental: ~ \$12K
 - Cleanup Fee: ~\$3k
- Hot Water Storage Tank
 - Monthly Rental: ~ \$3.5K
 - Cleanup Fee: ~\$3k
- Freight: \$4 to \$6K each way

Turn-key (24-hour day)

Description	Est. Unit Rate
4 Man Crew Mobilize to site	\$10,000
Day crew, 2 Operators/Technicians	\$3,250/shift
Night crew, 2 Operators/Technicians	\$3,250/shift
Boiler, Mobile unit w/ 80' of Hose	\$17,400/day
\$725.00/ Hour x 24-hour day	
Boiler Fuel Surcharge \$55.00 x 24-	\$1,320/day
hour day	
Per Diem x 4 Guys per night	\$1,250/night
4 Man Crew Demobilize	\$8 <i>,</i> 500

Tankless Heaters

Water	• Heating Capacit		
	Temperature		
Temperatu	re Rise	Flow Rate	
Rise	(°C)	(GPM)	
(°F)	ΔT°C = 5/9 ΔT°F		
35	19.4	12.1	
45	25.0	9.4	
55	30.6	7.7	
65	36.1	6.5	Detential Peaction
75	41.7	5.6	
90	50.0	4.7	
100	55.6	4.2	
120	66.7	3.5	
140	77.8	3.0	

Heat Enhanced Reductive Bioremediation

- Microbes that do all the work like a warm environment
- Warm water has lower dissolved gases
- Heating increases transesterification reaction rates

Performance Monitoring

Key Monitoring Tools

- Volatile Fatty Acids (VFAs)
- Next-Generation Sequencing (NGS)
- Photograph Curtesy of SiREM Lab

Ref: Groundwater Monitoring Rem, Volume: 38, Issue: 4, Pages: 88-98, First published:04 September 2018, DOI: (10.1111/gwmr.12300)

• Compound-Specific Isotope Analysis (CSIA)

Thank you

Gary M. Birk, P.E. (NC, VA, & FL) Tersus Environmental

T. + 1 919 453 5577 x2001 | M. + 1 919 638 7892 gary.birk@tersusenv.com | tersusenv.com

Working With Us

Request a Site Evaluation and Cost Estimate

tersusenv.com/support

